이 문서는 LangChain을 사용하여 AzureOpenAI embedding model을 시작하는 데 도움을 드립니다. AzureOpenAIEmbeddings의 기능 및 구성 옵션에 대한 자세한 문서는 API reference를 참조하세요.

Overview

Integration details

Setup

AzureOpenAI embedding model에 액세스하려면 Azure 계정을 생성하고, API key를 받고, langchain-openai integration package를 설치해야 합니다.

Credentials

배포된 Azure OpenAI 인스턴스가 필요합니다. 이 가이드를 따라 Azure Portal에서 버전을 배포할 수 있습니다. 인스턴스가 실행되면 인스턴스의 이름과 key가 있는지 확인하세요. Azure Portal의 인스턴스 “Keys and Endpoint” 섹션에서 key를 찾을 수 있습니다.
AZURE_OPENAI_ENDPOINT=<YOUR API ENDPOINT>
AZURE_OPENAI_API_KEY=<YOUR_KEY>
AZURE_OPENAI_API_VERSION="2024-02-01"
import getpass
import os

if not os.getenv("AZURE_OPENAI_API_KEY"):
    os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass(
        "Enter your AzureOpenAI API key: "
    )
model 호출의 자동 추적을 활성화하려면 LangSmith API key를 설정하세요:
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

Installation

LangChain AzureOpenAI integration은 langchain-openai package에 있습니다:
pip install -qU langchain-openai

Instantiation

이제 model 객체를 인스턴스화하고 chat completion을 생성할 수 있습니다:
from langchain_openai import AzureOpenAIEmbeddings

embeddings = AzureOpenAIEmbeddings(
    model="text-embedding-3-large",
    # dimensions: Optional[int] = None, # Can specify dimensions with new text-embedding-3 models
    # azure_endpoint="https://<your-endpoint>.openai.azure.com/", If not provided, will read env variable AZURE_OPENAI_ENDPOINT
    # api_key=... # Can provide an API key directly. If missing read env variable AZURE_OPENAI_API_KEY
    # openai_api_version=..., # If not provided, will read env variable AZURE_OPENAI_API_VERSION
)

Indexing and Retrieval

Embedding model은 데이터 인덱싱과 나중에 검색하는 과정 모두에서 retrieval-augmented generation (RAG) 플로우에 자주 사용됩니다. 자세한 지침은 RAG 튜토리얼을 참조하세요. 아래에서는 위에서 초기화한 embeddings 객체를 사용하여 데이터를 인덱싱하고 검색하는 방법을 확인할 수 있습니다. 이 예제에서는 InMemoryVectorStore에서 샘플 문서를 인덱싱하고 검색합니다.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore

text = "LangChain is the framework for building context-aware reasoning applications"

vectorstore = InMemoryVectorStore.from_texts(
    [text],
    embedding=embeddings,
)

# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()

# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")

# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'

Direct Usage

내부적으로 vectorstore와 retriever 구현은 embeddings.embed_documents(...)embeddings.embed_query(...)를 호출하여 각각 from_texts와 retrieval invoke 작업에 사용되는 텍스트에 대한 embedding을 생성합니다. 이러한 메서드를 직접 호출하여 자신의 사용 사례에 맞는 embedding을 얻을 수 있습니다.

Embed single texts

embed_query를 사용하여 단일 텍스트나 문서를 embedding할 수 있습니다:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100])  # Show the first 100 characters of the vector
[-0.0011676070280373096, 0.007125577889382839, -0.014674457721412182, -0.034061674028635025, 0.01128

Embed multiple texts

embed_documents를 사용하여 여러 텍스트를 embedding할 수 있습니다:
text2 = (
    "LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
    print(str(vector)[:100])  # Show the first 100 characters of the vector
[-0.0011966148158535361, 0.007160289213061333, -0.014659193344414234, -0.03403077274560928, 0.011280
[-0.005595256108790636, 0.016757294535636902, -0.011055258102715015, -0.031094247475266457, -0.00363

API reference

AzureOpenAIEmbeddings의 기능 및 구성 옵션에 대한 자세한 문서는 API reference를 참조하세요.
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.
I