OpenAPI/Swagger 사양을 준수하는 API를 다룹니다.
Copy
# NOTE: In this example. We must set `allow_dangerous_request=True` to enable the OpenAPI Agent to automatically use the Request Tool.
# This can be dangerous for calling unwanted requests. Please make sure your custom OpenAPI spec (yaml) is safe.
ALLOW_DANGEROUS_REQUEST = True
1번째 예제: hierarchical planning agent
이 예제에서는 로봇 공학에서 일반적이며 최근 LLM X 로봇 공학 연구에서 등장하는 hierarchical planning이라는 접근 방식을 살펴보겠습니다. 이는 대규모 API 사양 작업을 시작하고 API에 대해 여러 단계가 필요한 사용자 쿼리를 지원하는 데 유용한 접근 방식임을 알 수 있습니다. 아이디어는 간단합니다: 긴 시퀀스 동작에 걸쳐 일관된 agent 동작을 얻고 토큰을 절약하기 위해 관심사를 분리합니다. “planner”는 호출할 endpoint를 담당하고 “controller”는 호출 방법을 담당합니다. 초기 구현에서 planner는 각 endpoint의 이름과 간단한 설명을 컨텍스트에 포함하는 LLM chain입니다. controller는 특정 계획에 대한 endpoint의 문서만으로 인스턴스화되는 LLM agent입니다. 이것을 매우 견고하게 작동시키기 위해서는 아직 할 일이 많습니다 :)시작하기 위해 몇 가지 OpenAPI spec을 수집해 보겠습니다
Copy
import os
import yaml
Copy
!wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml
!wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml
!wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml
Copy
--2023-03-31 15:45:56-- https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 122995 (120K) [text/plain]
Saving to: ‘openapi.yaml’
openapi.yaml 100%[===================>] 120.11K --.-KB/s in 0.01s
2023-03-31 15:45:56 (10.4 MB/s) - ‘openapi.yaml’ saved [122995/122995]
--2023-03-31 15:45:57-- https://www.klarna.com/us/shopping/public/openai/v0/api-docs
Resolving www.klarna.com (www.klarna.com)... 52.84.150.34, 52.84.150.46, 52.84.150.61, ...
Connecting to www.klarna.com (www.klarna.com)|52.84.150.34|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [application/json]
Saving to: ‘api-docs’
api-docs [ <=> ] 1.87K --.-KB/s in 0s
2023-03-31 15:45:57 (261 MB/s) - ‘api-docs’ saved [1916]
--2023-03-31 15:45:57-- https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 286747 (280K) [text/plain]
Saving to: ‘openapi.yaml’
openapi.yaml 100%[===================>] 280.03K --.-KB/s in 0.02s
2023-03-31 15:45:58 (13.3 MB/s) - ‘openapi.yaml’ saved [286747/286747]
Copy
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
Copy
with open("openai_openapi.yaml") as f:
raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader)
openai_api_spec = reduce_openapi_spec(raw_openai_api_spec)
with open("klarna_openapi.yaml") as f:
raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader)
klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec)
with open("spotify_openapi.yaml") as f:
raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader)
spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec)
다소 복잡한 API의 예제 중 하나로 Spotify API를 사용하겠습니다. 이를 재현하려면 인증 관련 설정이 필요합니다.
CLIENT_ID,CLIENT_SECRET,REDIRECT_URI자격 증명을 얻으려면 여기에 문서화된 대로 Spotify 개발자 콘솔에서 애플리케이션을 설정해야 합니다.- access token을 얻고 최신 상태로 유지하려면 oauth flow를 구현하거나
spotipy를 사용할 수 있습니다. Spotify 자격 증명을 환경 변수SPOTIPY_CLIENT_ID,SPOTIPY_CLIENT_SECRET,SPOTIPY_REDIRECT_URI로 설정한 경우 아래의 헬퍼 함수를 사용할 수 있습니다:
Copy
import spotipy.util as util
from langchain_community.utilities.requests import RequestsWrapper
def construct_spotify_auth_headers(raw_spec: dict):
scopes = list(
raw_spec["components"]["securitySchemes"]["oauth_2_0"]["flows"][
"authorizationCode"
]["scopes"].keys()
)
access_token = util.prompt_for_user_token(scope=",".join(scopes))
return {"Authorization": f"Bearer {access_token}"}
# Get API credentials.
headers = construct_spotify_auth_headers(raw_spotify_api_spec)
requests_wrapper = RequestsWrapper(headers=headers)
이 spec의 크기는 얼마나 될까요?
Copy
endpoints = [
(route, operation)
for route, operations in raw_spotify_api_spec["paths"].items()
for operation in operations
if operation in ["get", "post"]
]
len(endpoints)
Copy
63
Copy
import tiktoken
enc = tiktoken.encoding_for_model("gpt-4")
def count_tokens(s):
return len(enc.encode(s))
count_tokens(yaml.dump(raw_spotify_api_spec))
Copy
80326
몇 가지 예제를 살펴보겠습니다
GPT-4부터 시작합니다. (GPT-3 제품군에 대한 견고성 개선 작업이 진행 중입니다.)Copy
from langchain_community.agent_toolkits.openapi import planner
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
Copy
/Users/jeremywelborn/src/langchain/langchain/llms/openai.py:169: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain_openai import ChatOpenAI`
warnings.warn(
/Users/jeremywelborn/src/langchain/langchain/llms/openai.py:608: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain_openai import ChatOpenAI`
warnings.warn(
Copy
# NOTE: set allow_dangerous_requests manually for security concern
spotify_agent = planner.create_openapi_agent(
spotify_api_spec,
requests_wrapper,
llm,
allow_dangerous_requests=ALLOW_DANGEROUS_REQUEST,
)
user_query = (
"make me a playlist with the first song from kind of blue. call it machine blues."
)
spotify_agent.invoke(user_query)
Copy
> Entering new AgentExecutor chain...
Action: api_planner
Action Input: I need to find the right API calls to create a playlist with the first song from Kind of Blue and name it Machine Blues
Observation: 1. GET /search to search for the album "Kind of Blue"
2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album
3. GET /me to get the current user's information
4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user
5. POST /playlists/{playlist_id}/tracks to add the first song from "Kind of Blue" to the "Machine Blues" playlist
Thought:I have the plan, now I need to execute the API calls.
Action: api_controller
Action Input: 1. GET /search to search for the album "Kind of Blue"
2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album
3. GET /me to get the current user's information
4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user
5. POST /playlists/{playlist_id}/tracks to add the first song from "Kind of Blue" to the "Machine Blues" playlist
> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/search?q=Kind%20of%20Blue&type=album", "output_instructions": "Extract the id of the first album in the search results"}
Observation: 1weenld61qoidwYuZ1GESA
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/albums/1weenld61qoidwYuZ1GESA/tracks", "output_instructions": "Extract the id of the first track in the album"}
Observation: 7q3kkfAVpmcZ8g6JUThi3o
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/me", "output_instructions": "Extract the id of the current user"}
Observation: 22rhrz4m4kvpxlsb5hezokzwi
Thought:Action: requests_post
Action Input: {"url": "https://api.spotify.com/v1/users/22rhrz4m4kvpxlsb5hezokzwi/playlists", "data": {"name": "Machine Blues"}, "output_instructions": "Extract the id of the created playlist"}
Observation: 7lzoEi44WOISnFYlrAIqyX
Thought:Action: requests_post
Action Input: {"url": "https://api.spotify.com/v1/playlists/7lzoEi44WOISnFYlrAIqyX/tracks", "data": {"uris": ["spotify:track:7q3kkfAVpmcZ8g6JUThi3o"]}, "output_instructions": "Confirm that the track was added to the playlist"}
Observation: The track was added to the playlist, confirmed by the snapshot_id: MiwxODMxNTMxZTFlNzg3ZWFlZmMxYTlmYWQyMDFiYzUwNDEwMTAwZmE1.
Thought:I am finished executing the plan.
Final Answer: The first song from the "Kind of Blue" album has been added to the "Machine Blues" playlist.
> Finished chain.
Observation: The first song from the "Kind of Blue" album has been added to the "Machine Blues" playlist.
Thought:I am finished executing the plan and have created the playlist with the first song from Kind of Blue.
Final Answer: I have created a playlist called "Machine Blues" with the first song from the "Kind of Blue" album.
> Finished chain.
Copy
'I have created a playlist called "Machine Blues" with the first song from the "Kind of Blue" album.'
Copy
user_query = "give me a song I'd like, make it blues-ey"
spotify_agent.invoke(user_query)
Copy
> Entering new AgentExecutor chain...
Action: api_planner
Action Input: I need to find the right API calls to get a blues song recommendation for the user
Observation: 1. GET /me to get the current user's information
2. GET /recommendations/available-genre-seeds to retrieve a list of available genres
3. GET /recommendations with the seed_genre parameter set to "blues" to get a blues song recommendation for the user
Thought:I have the plan, now I need to execute the API calls.
Action: api_controller
Action Input: 1. GET /me to get the current user's information
2. GET /recommendations/available-genre-seeds to retrieve a list of available genres
3. GET /recommendations with the seed_genre parameter set to "blues" to get a blues song recommendation for the user
> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/me", "output_instructions": "Extract the user's id and username"}
Observation: ID: 22rhrz4m4kvpxlsb5hezokzwi, Username: Jeremy Welborn
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/recommendations/available-genre-seeds", "output_instructions": "Extract the list of available genres"}
Observation: acoustic, afrobeat, alt-rock, alternative, ambient, anime, black-metal, bluegrass, blues, bossanova, brazil, breakbeat, british, cantopop, chicago-house, children, chill, classical, club, comedy, country, dance, dancehall, death-metal, deep-house, detroit-techno, disco, disney, drum-and-bass, dub, dubstep, edm, electro, electronic, emo, folk, forro, french, funk, garage, german, gospel, goth, grindcore, groove, grunge, guitar, happy, hard-rock, hardcore, hardstyle, heavy-metal, hip-hop, holidays, honky-tonk, house, idm, indian, indie, indie-pop, industrial, iranian, j-dance, j-idol, j-pop, j-rock, jazz, k-pop, kids, latin, latino, malay, mandopop, metal, metal-misc, metalcore, minimal-techno, movies, mpb, new-age, new-release, opera, pagode, party, philippines-
Thought:
Copy
Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised RateLimitError: That model is currently overloaded with other requests. You can retry your request, or contact us through our help center at help.openai.com if the error persists. (Please include the request ID 2167437a0072228238f3c0c5b3882764 in your message.).
Copy
Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/recommendations?seed_genres=blues", "output_instructions": "Extract the list of recommended tracks with their ids and names"}
Observation: [
{
id: '03lXHmokj9qsXspNsPoirR',
name: 'Get Away Jordan'
}
]
Thought:I am finished executing the plan.
Final Answer: The recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR.
> Finished chain.
Observation: The recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR.
Thought:I am finished executing the plan and have the information the user asked for.
Final Answer: The recommended blues song for you is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR.
> Finished chain.
Copy
'The recommended blues song for you is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR.'
다른 API 시도하기
Copy
headers = {"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"}
openai_requests_wrapper = RequestsWrapper(headers=headers)
Copy
# Meta!
llm = ChatOpenAI(model_name="gpt-4", temperature=0.25)
openai_agent = planner.create_openapi_agent(
openai_api_spec, openai_requests_wrapper, llm
)
user_query = "generate a short piece of advice"
openai_agent.invoke(user_query)
Copy
> Entering new AgentExecutor chain...
Action: api_planner
Action Input: I need to find the right API calls to generate a short piece of advice
Observation: 1. GET /engines to retrieve the list of available engines
2. POST /completions with the selected engine and a prompt for generating a short piece of advice
Thought:I have the plan, now I need to execute the API calls.
Action: api_controller
Action Input: 1. GET /engines to retrieve the list of available engines
2. POST /completions with the selected engine and a prompt for generating a short piece of advice
> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.openai.com/v1/engines", "output_instructions": "Extract the ids of the engines"}
Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-001, ada, babbage-code-search-text, babbage-similarity, whisper-1, code-search-babbage-text-001, text-curie-001, code-search-babbage-code-001, text-ada-001, text-embedding-ada-002, text-similarity-ada-001, curie-instruct-beta, ada-code-search-code, ada-similarity, text-davinci-003, code-search-ada-text-001, text-search-ada-query-001, davinci-search-document, ada-code-search-text, text-search-ada-doc-001, davinci-instruct-beta, text-similarity-curie-001, code-search-ada-code-001
Thought:I will use the "davinci" engine to generate a short piece of advice.
Action: requests_post
Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"engine": "davinci", "prompt": "Give me a short piece of advice on how to be more productive."}, "output_instructions": "Extract the text from the first choice"}
Observation: "you must provide a model parameter"
Thought:!! Could not _extract_tool_and_input from "I cannot finish executing the plan without knowing how to provide the model parameter correctly." in _get_next_action
I cannot finish executing the plan without knowing how to provide the model parameter correctly.
> Finished chain.
Observation: I need more information on how to provide the model parameter correctly in the POST request to generate a short piece of advice.
Thought:I need to adjust my plan to include the model parameter in the POST request.
Action: api_planner
Action Input: I need to find the right API calls to generate a short piece of advice, including the model parameter in the POST request
Observation: 1. GET /models to retrieve the list of available models
2. Choose a suitable model from the list
3. POST /completions with the chosen model as a parameter to generate a short piece of advice
Thought:I have an updated plan, now I need to execute the API calls.
Action: api_controller
Action Input: 1. GET /models to retrieve the list of available models
2. Choose a suitable model from the list
3. POST /completions with the chosen model as a parameter to generate a short piece of advice
> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.openai.com/v1/models", "output_instructions": "Extract the ids of the available models"}
Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada
Thought:Action: requests_post
Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"model": "davinci", "prompt": "Give me a short piece of advice on how to improve communication skills."}, "output_instructions": "Extract the text from the first choice"}
Observation: "I'd like to broaden my horizon.\n\nI was trying to"
Thought:I cannot finish executing the plan without knowing some other information.
Final Answer: The generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response.
> Finished chain.
Observation: The generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response.
Thought:I need to adjust my plan to include a more specific prompt for generating a short piece of advice on improving communication skills.
Action: api_planner
Action Input: I need to find the right API calls to generate a short piece of advice on improving communication skills, including the model parameter in the POST request
Observation: 1. GET /models to retrieve the list of available models
2. Choose a suitable model for generating text (e.g., text-davinci-002)
3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice
Thought:I have an updated plan, now I need to execute the API calls.
Action: api_controller
Action Input: 1. GET /models to retrieve the list of available models
2. Choose a suitable model for generating text (e.g., text-davinci-002)
3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice
> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.openai.com/v1/models", "output_instructions": "Extract the names of the models"}
Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada
Thought:Action: requests_post
Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"model": "text-davinci-002", "prompt": "Give a short piece of advice on how to improve communication skills"}, "output_instructions": "Extract the text from the first choice"}
Observation: "Some basic advice for improving communication skills would be to make sure to listen"
Thought:I am finished executing the plan.
Final Answer: Some basic advice for improving communication skills would be to make sure to listen.
> Finished chain.
Observation: Some basic advice for improving communication skills would be to make sure to listen.
Thought:I am finished executing the plan and have the information the user asked for.
Final Answer: A short piece of advice for improving communication skills is to make sure to listen.
> Finished chain.
Copy
'A short piece of advice for improving communication skills is to make sure to listen.'
2번째 예제: “json explorer” agent
여기 특별히 실용적이지는 않지만 멋진 agent가 있습니다! 이 agent는 2개의 toolkit에 액세스할 수 있습니다. 하나는 json과 상호 작용하는 도구로 구성됩니다: json 객체의 key를 나열하는 도구와 주어진 key의 값을 가져오는 도구입니다. 다른 toolkit은 GET 및 POST 요청을 보내는requests wrapper로 구성됩니다. 이 agent는 언어 모델에 대한 많은 호출을 소비하지만 놀랍도록 괜찮은 작업을 수행합니다.
Copy
from langchain_community.agent_toolkits import OpenAPIToolkit, create_openapi_agent
from langchain_community.tools.json.tool import JsonSpec
from langchain_openai import OpenAI
Copy
with open("openai_openapi.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
json_spec = JsonSpec(dict_=data, max_value_length=4000)
openapi_toolkit = OpenAPIToolkit.from_llm(
OpenAI(temperature=0), json_spec, openai_requests_wrapper, verbose=True
)
openapi_agent_executor = create_openapi_agent(
llm=OpenAI(temperature=0),
toolkit=openapi_toolkit,
allow_dangerous_requests=ALLOW_DANGEROUS_REQUEST,
verbose=True,
)
Copy
openapi_agent_executor.run(
"Make a post request to openai /completions. The prompt should be 'tell me a joke.'"
)
Copy
> Entering new AgentExecutor chain...
Action: json_explorer
Action Input: What is the base url for the API?
> Entering new AgentExecutor chain...
Action: json_spec_list_keys
Action Input: data
Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']
Thought: I should look at the servers key to see what the base url is
Action: json_spec_list_keys
Action Input: data["servers"][0]
Observation: ValueError('Value at path `data["servers"][0]` is not a dict, get the value directly.')
Thought: I should get the value of the servers key
Action: json_spec_get_value
Action Input: data["servers"][0]
Observation: {'url': 'https://api.openai.com/v1'}
Thought: I now know the base url for the API
Final Answer: The base url for the API is https://api.openai.com/v1
> Finished chain.
Observation: The base url for the API is https://api.openai.com/v1
Thought: I should find the path for the /completions endpoint.
Action: json_explorer
Action Input: What is the path for the /completions endpoint?
> Entering new AgentExecutor chain...
Action: json_spec_list_keys
Action Input: data
Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']
Thought: I should look at the paths key to see what endpoints exist
Action: json_spec_list_keys
Action Input: data["paths"]
Observation: ['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations']
Thought: I now know the path for the /completions endpoint
Final Answer: The path for the /completions endpoint is data["paths"][2]
> Finished chain.
Observation: The path for the /completions endpoint is data["paths"][2]
Thought: I should find the required parameters for the POST request.
Action: json_explorer
Action Input: What are the required parameters for a POST request to the /completions endpoint?
> Entering new AgentExecutor chain...
Action: json_spec_list_keys
Action Input: data
Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']
Thought: I should look at the paths key to see what endpoints exist
Action: json_spec_list_keys
Action Input: data["paths"]
Observation: ['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations']
Thought: I should look at the /completions endpoint to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]
Observation: ['post']
Thought: I should look at the post key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]
Observation: ['operationId', 'tags', 'summary', 'requestBody', 'responses', 'x-oaiMeta']
Thought: I should look at the requestBody key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]["requestBody"]
Observation: ['required', 'content']
Thought: I should look at the content key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]
Observation: ['application/json']
Thought: I should look at the application/json key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]
Observation: ['schema']
Thought: I should look at the schema key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]
Observation: ['$ref']
Thought: I should look at the $ref key to see what parameters are required
Action: json_spec_list_keys
Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"]
Observation: ValueError('Value at path `data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"]` is not a dict, get the value directly.')
Thought: I should look at the $ref key to get the value directly
Action: json_spec_get_value
Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"]
Observation: #/components/schemas/CreateCompletionRequest
Thought: I should look at the CreateCompletionRequest schema to see what parameters are required
Action: json_spec_list_keys
Action Input: data["components"]["schemas"]["CreateCompletionRequest"]
Observation: ['type', 'properties', 'required']
Thought: I should look at the required key to see what parameters are required
Action: json_spec_get_value
Action Input: data["components"]["schemas"]["CreateCompletionRequest"]["required"]
Observation: ['model']
Thought: I now know the final answer
Final Answer: The required parameters for a POST request to the /completions endpoint are 'model'.
> Finished chain.
Observation: The required parameters for a POST request to the /completions endpoint are 'model'.
Thought: I now know the parameters needed to make the request.
Action: requests_post
Action Input: { "url": "https://api.openai.com/v1/completions", "data": { "model": "davinci", "prompt": "tell me a joke" } }
Observation: {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\n\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}}
Thought: I now know the final answer.
Final Answer: The response of the POST request is {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\n\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}}
> Finished chain.
Copy
'The response of the POST request is {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\\n\\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}}'
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.