ClearML은 ML/DL 개발 및 프로덕션 제품군으로, 5개의 주요 모듈을 포함합니다:langchain 실험과 그 결과를 적절하게 추적하기 위해
Experiment Manager- 자동 실험 추적, 환경 및 결과 관리MLOps- ML/DL 작업을 위한 오케스트레이션, 자동화 및 파이프라인 솔루션 (K8s / Cloud / bare-metal)Data-Management- 객체 스토리지(S3 / GS / Azure / NAS) 위에 구축된 완전히 차별화된 데이터 관리 및 버전 관리 솔루션Model-Serving- 클라우드 지원 확장 가능한 모델 서빙 솔루션! 5분 이내에 새로운 모델 엔드포인트 배포 Nvidia-Triton 기반의 최적화된 GPU 서빙 지원 포함 기본 제공되는 모델 모니터링 기능Fire Reports- 임베드 가능한 온라인 콘텐츠를 지원하는 풍부한 MarkDown 문서 생성 및 공유
ClearML 통합을 활성화할 수 있습니다. 모든 실험 실행을 깔끔하게 추적하고 정리하는 ClearML Experiment Manager를 사용합니다.
Installation and Setup
Copy
pip install -qU clearml
pip install -qU pandas
pip install -qU textstat
pip install -qU spacy
!python -m spacy download en_core_web_sm
API Credentials 얻기
이 노트북에서 여러 API를 사용할 예정이며, 다음은 목록과 API를 얻을 수 있는 위치입니다:- ClearML: app.clear.ml/settings/workspace-configuration
- OpenAI: platform.openai.com/account/api-keys
- SerpAPI (google search): serpapi.com/dashboard
Copy
import os
os.environ["CLEARML_API_ACCESS_KEY"] = ""
os.environ["CLEARML_API_SECRET_KEY"] = ""
os.environ["OPENAI_API_KEY"] = ""
os.environ["SERPAPI_API_KEY"] = ""
Callbacks
Copy
from langchain_community.callbacks import ClearMLCallbackHandler
Copy
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
# Setup and use the ClearML Callback
clearml_callback = ClearMLCallbackHandler(
task_type="inference",
project_name="langchain_callback_demo",
task_name="llm",
tags=["test"],
# Change the following parameters based on the amount of detail you want tracked
visualize=True,
complexity_metrics=True,
stream_logs=True,
)
callbacks = [StdOutCallbackHandler(), clearml_callback]
# Get the OpenAI model ready to go
llm = OpenAI(temperature=0, callbacks=callbacks)
Copy
The clearml callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/allegroai/clearml/issues with the tag `langchain`.
Scenario 1: LLM만 사용하기
먼저, 단일 LLM을 몇 번 실행하고 결과로 나온 프롬프트-답변 대화를 ClearML에 캡처해 보겠습니다.Copy
# SCENARIO 1 - LLM
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
# After every generation run, use flush to make sure all the metrics
# prompts and other output are properly saved separately
clearml_callback.flush_tracker(langchain_asset=llm, name="simple_sequential")
Copy
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nRoses are red,\nViolets are blue,\nSugar is sweet,\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nRoses are red,\nViolets are blue,\nSugar is sweet,\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\n\nRoses are red,\nViolets are blue,\nSugar is sweet,\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}
{'action_records': action name step starts ends errors text_ctr chain_starts \
0 on_llm_start OpenAI 1 1 0 0 0 0
1 on_llm_start OpenAI 1 1 0 0 0 0
2 on_llm_start OpenAI 1 1 0 0 0 0
3 on_llm_start OpenAI 1 1 0 0 0 0
4 on_llm_start OpenAI 1 1 0 0 0 0
5 on_llm_start OpenAI 1 1 0 0 0 0
6 on_llm_end NaN 2 1 1 0 0 0
7 on_llm_end NaN 2 1 1 0 0 0
8 on_llm_end NaN 2 1 1 0 0 0
9 on_llm_end NaN 2 1 1 0 0 0
10 on_llm_end NaN 2 1 1 0 0 0
11 on_llm_end NaN 2 1 1 0 0 0
12 on_llm_start OpenAI 3 2 1 0 0 0
13 on_llm_start OpenAI 3 2 1 0 0 0
14 on_llm_start OpenAI 3 2 1 0 0 0
15 on_llm_start OpenAI 3 2 1 0 0 0
16 on_llm_start OpenAI 3 2 1 0 0 0
17 on_llm_start OpenAI 3 2 1 0 0 0
18 on_llm_end NaN 4 2 2 0 0 0
19 on_llm_end NaN 4 2 2 0 0 0
20 on_llm_end NaN 4 2 2 0 0 0
21 on_llm_end NaN 4 2 2 0 0 0
22 on_llm_end NaN 4 2 2 0 0 0
23 on_llm_end NaN 4 2 2 0 0 0
chain_ends llm_starts ... difficult_words linsear_write_formula \
0 0 1 ... NaN NaN
1 0 1 ... NaN NaN
2 0 1 ... NaN NaN
3 0 1 ... NaN NaN
4 0 1 ... NaN NaN
5 0 1 ... NaN NaN
6 0 1 ... 0.0 5.5
7 0 1 ... 2.0 6.5
8 0 1 ... 0.0 5.5
9 0 1 ... 2.0 6.5
10 0 1 ... 0.0 5.5
11 0 1 ... 2.0 6.5
12 0 2 ... NaN NaN
13 0 2 ... NaN NaN
14 0 2 ... NaN NaN
15 0 2 ... NaN NaN
16 0 2 ... NaN NaN
17 0 2 ... NaN NaN
18 0 2 ... 0.0 5.5
19 0 2 ... 2.0 6.5
20 0 2 ... 0.0 5.5
21 0 2 ... 2.0 6.5
22 0 2 ... 0.0 5.5
23 0 2 ... 2.0 6.5
gunning_fog text_standard fernandez_huerta szigriszt_pazos \
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 5.20 5th and 6th grade 133.58 131.54
7 8.28 6th and 7th grade 115.58 112.37
8 5.20 5th and 6th grade 133.58 131.54
9 8.28 6th and 7th grade 115.58 112.37
10 5.20 5th and 6th grade 133.58 131.54
11 8.28 6th and 7th grade 115.58 112.37
12 NaN NaN NaN NaN
13 NaN NaN NaN NaN
14 NaN NaN NaN NaN
15 NaN NaN NaN NaN
16 NaN NaN NaN NaN
17 NaN NaN NaN NaN
18 5.20 5th and 6th grade 133.58 131.54
19 8.28 6th and 7th grade 115.58 112.37
20 5.20 5th and 6th grade 133.58 131.54
21 8.28 6th and 7th grade 115.58 112.37
22 5.20 5th and 6th grade 133.58 131.54
23 8.28 6th and 7th grade 115.58 112.37
gutierrez_polini crawford gulpease_index osman
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 62.30 -0.2 79.8 116.91
7 54.83 1.4 72.1 100.17
8 62.30 -0.2 79.8 116.91
9 54.83 1.4 72.1 100.17
10 62.30 -0.2 79.8 116.91
11 54.83 1.4 72.1 100.17
12 NaN NaN NaN NaN
13 NaN NaN NaN NaN
14 NaN NaN NaN NaN
15 NaN NaN NaN NaN
16 NaN NaN NaN NaN
17 NaN NaN NaN NaN
18 62.30 -0.2 79.8 116.91
19 54.83 1.4 72.1 100.17
20 62.30 -0.2 79.8 116.91
21 54.83 1.4 72.1 100.17
22 62.30 -0.2 79.8 116.91
23 54.83 1.4 72.1 100.17
[24 rows x 39 columns], 'session_analysis': prompt_step prompts name output_step \
0 1 Tell me a joke OpenAI 2
1 1 Tell me a poem OpenAI 2
2 1 Tell me a joke OpenAI 2
3 1 Tell me a poem OpenAI 2
4 1 Tell me a joke OpenAI 2
5 1 Tell me a poem OpenAI 2
6 3 Tell me a joke OpenAI 4
7 3 Tell me a poem OpenAI 4
8 3 Tell me a joke OpenAI 4
9 3 Tell me a poem OpenAI 4
10 3 Tell me a joke OpenAI 4
11 3 Tell me a poem OpenAI 4
output \
0 \n\nQ: What did the fish say when it hit the w...
1 \n\nRoses are red,\nViolets are blue,\nSugar i...
2 \n\nQ: What did the fish say when it hit the w...
3 \n\nRoses are red,\nViolets are blue,\nSugar i...
4 \n\nQ: What did the fish say when it hit the w...
5 \n\nRoses are red,\nViolets are blue,\nSugar i...
6 \n\nQ: What did the fish say when it hit the w...
7 \n\nRoses are red,\nViolets are blue,\nSugar i...
8 \n\nQ: What did the fish say when it hit the w...
9 \n\nRoses are red,\nViolets are blue,\nSugar i...
10 \n\nQ: What did the fish say when it hit the w...
11 \n\nRoses are red,\nViolets are blue,\nSugar i...
token_usage_total_tokens token_usage_prompt_tokens \
0 162 24
1 162 24
2 162 24
3 162 24
4 162 24
5 162 24
6 162 24
7 162 24
8 162 24
9 162 24
10 162 24
11 162 24
token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \
0 138 109.04 1.3
1 138 83.66 4.8
2 138 109.04 1.3
3 138 83.66 4.8
4 138 109.04 1.3
5 138 83.66 4.8
6 138 109.04 1.3
7 138 83.66 4.8
8 138 109.04 1.3
9 138 83.66 4.8
10 138 109.04 1.3
11 138 83.66 4.8
... difficult_words linsear_write_formula gunning_fog \
0 ... 0 5.5 5.20
1 ... 2 6.5 8.28
2 ... 0 5.5 5.20
3 ... 2 6.5 8.28
4 ... 0 5.5 5.20
5 ... 2 6.5 8.28
6 ... 0 5.5 5.20
7 ... 2 6.5 8.28
8 ... 0 5.5 5.20
9 ... 2 6.5 8.28
10 ... 0 5.5 5.20
11 ... 2 6.5 8.28
text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \
0 5th and 6th grade 133.58 131.54 62.30
1 6th and 7th grade 115.58 112.37 54.83
2 5th and 6th grade 133.58 131.54 62.30
3 6th and 7th grade 115.58 112.37 54.83
4 5th and 6th grade 133.58 131.54 62.30
5 6th and 7th grade 115.58 112.37 54.83
6 5th and 6th grade 133.58 131.54 62.30
7 6th and 7th grade 115.58 112.37 54.83
8 5th and 6th grade 133.58 131.54 62.30
9 6th and 7th grade 115.58 112.37 54.83
10 5th and 6th grade 133.58 131.54 62.30
11 6th and 7th grade 115.58 112.37 54.83
crawford gulpease_index osman
0 -0.2 79.8 116.91
1 1.4 72.1 100.17
2 -0.2 79.8 116.91
3 1.4 72.1 100.17
4 -0.2 79.8 116.91
5 1.4 72.1 100.17
6 -0.2 79.8 116.91
7 1.4 72.1 100.17
8 -0.2 79.8 116.91
9 1.4 72.1 100.17
10 -0.2 79.8 116.91
11 1.4 72.1 100.17
[12 rows x 24 columns]}
2023-03-29 14:00:25,948 - clearml.Task - INFO - Completed model upload to https://files.clear.ml/langchain_callback_demo/llm.988bd727b0e94a29a3ac0ee526813545/models/simple_sequential
Scenario 2: 도구를 사용하는 agent 생성하기
더 고급 워크플로우를 보여주기 위해 도구에 액세스할 수 있는 agent를 생성해 보겠습니다. ClearML이 결과를 추적하는 방식은 다르지 않지만, 이전의 더 간단한 예제와 비교할 때 다른 유형의 작업이 수행되므로 테이블이 약간 다르게 보일 것입니다. 이제finish=True 키워드의 사용도 볼 수 있는데, 이는 새로운 대화를 위해 파라미터와 프롬프트를 재설정하는 대신 ClearML Task를 완전히 종료합니다.
Copy
from langchain.agents import AgentType, initialize_agent, load_tools
# SCENARIO 2 - Agent with Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=callbacks,
)
agent.run("Who is the wife of the person who sang summer of 69?")
clearml_callback.flush_tracker(
langchain_asset=agent, name="Agent with Tools", finish=True
)
Copy
> Entering new AgentExecutor chain...
{'action': 'on_chain_start', 'name': 'AgentExecutor', 'step': 1, 'starts': 1, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 0, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'input': 'Who is the wife of the person who sang summer of 69?'}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 2, 'starts': 2, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\n\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who is the wife of the person who sang summer of 69?\nThought:'}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 189, 'token_usage_completion_tokens': 34, 'token_usage_total_tokens': 223, 'model_name': 'text-davinci-003', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': ' I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 91.61, 'flesch_kincaid_grade': 3.8, 'smog_index': 0.0, 'coleman_liau_index': 3.41, 'automated_readability_index': 3.5, 'dale_chall_readability_score': 6.06, 'difficult_words': 2, 'linsear_write_formula': 5.75, 'gunning_fog': 5.4, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 121.07, 'szigriszt_pazos': 119.5, 'gutierrez_polini': 54.91, 'crawford': 0.9, 'gulpease_index': 72.7, 'osman': 92.16}
I need to find out who sang summer of 69 and then find out who their wife is.
Action: Search
Action Input: "Who sang summer of 69"{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who sang summer of 69', 'log': ' I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"', 'step': 4, 'starts': 3, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 1, 'tool_ends': 0, 'agent_ends': 0}
{'action': 'on_tool_start', 'input_str': 'Who sang summer of 69', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 5, 'starts': 4, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 0, 'agent_ends': 0}
Observation: Bryan Adams - Summer Of 69 (Official Music Video).
Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams - Summer Of 69 (Official Music Video).', 'step': 6, 'starts': 4, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 7, 'starts': 5, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\n\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who is the wife of the person who sang summer of 69?\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\nThought:'}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 242, 'token_usage_completion_tokens': 28, 'token_usage_total_tokens': 270, 'model_name': 'text-davinci-003', 'step': 8, 'starts': 5, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'text': ' I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 94.66, 'flesch_kincaid_grade': 2.7, 'smog_index': 0.0, 'coleman_liau_index': 4.73, 'automated_readability_index': 4.0, 'dale_chall_readability_score': 7.16, 'difficult_words': 2, 'linsear_write_formula': 4.25, 'gunning_fog': 4.2, 'text_standard': '4th and 5th grade', 'fernandez_huerta': 124.13, 'szigriszt_pazos': 119.2, 'gutierrez_polini': 52.26, 'crawford': 0.7, 'gulpease_index': 74.7, 'osman': 84.2}
I need to find out who Bryan Adams is married to.
Action: Search
Action Input: "Who is Bryan Adams married to"{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who is Bryan Adams married to', 'log': ' I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"', 'step': 9, 'starts': 6, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 3, 'tool_ends': 1, 'agent_ends': 0}
{'action': 'on_tool_start', 'input_str': 'Who is Bryan Adams married to', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 10, 'starts': 7, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 1, 'agent_ends': 0}
Observation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...
Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...', 'step': 11, 'starts': 7, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0}
{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 12, 'starts': 8, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\n\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who is the wife of the person who sang summer of 69?\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\nThought: I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"\nObservation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\nThought:'}
{'action': 'on_llm_end', 'token_usage_prompt_tokens': 314, 'token_usage_completion_tokens': 18, 'token_usage_total_tokens': 332, 'model_name': 'text-davinci-003', 'step': 13, 'starts': 8, 'ends': 5, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'text': ' I now know the final answer.\nFinal Answer: Bryan Adams has never been married.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 81.29, 'flesch_kincaid_grade': 3.7, 'smog_index': 0.0, 'coleman_liau_index': 5.75, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 7.37, 'difficult_words': 1, 'linsear_write_formula': 2.5, 'gunning_fog': 2.8, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 115.7, 'szigriszt_pazos': 110.84, 'gutierrez_polini': 49.79, 'crawford': 0.7, 'gulpease_index': 85.4, 'osman': 83.14}
I now know the final answer.
Final Answer: Bryan Adams has never been married.
{'action': 'on_agent_finish', 'output': 'Bryan Adams has never been married.', 'log': ' I now know the final answer.\nFinal Answer: Bryan Adams has never been married.', 'step': 14, 'starts': 8, 'ends': 6, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}
> Finished chain.
{'action': 'on_chain_end', 'outputs': 'Bryan Adams has never been married.', 'step': 15, 'starts': 8, 'ends': 7, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 1, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}
{'action_records': action name step starts ends errors text_ctr \
0 on_llm_start OpenAI 1 1 0 0 0
1 on_llm_start OpenAI 1 1 0 0 0
2 on_llm_start OpenAI 1 1 0 0 0
3 on_llm_start OpenAI 1 1 0 0 0
4 on_llm_start OpenAI 1 1 0 0 0
.. ... ... ... ... ... ... ...
66 on_tool_end NaN 11 7 4 0 0
67 on_llm_start OpenAI 12 8 4 0 0
68 on_llm_end NaN 13 8 5 0 0
69 on_agent_finish NaN 14 8 6 0 0
70 on_chain_end NaN 15 8 7 0 0
chain_starts chain_ends llm_starts ... gulpease_index osman input \
0 0 0 1 ... NaN NaN NaN
1 0 0 1 ... NaN NaN NaN
2 0 0 1 ... NaN NaN NaN
3 0 0 1 ... NaN NaN NaN
4 0 0 1 ... NaN NaN NaN
.. ... ... ... ... ... ... ...
66 1 0 2 ... NaN NaN NaN
67 1 0 3 ... NaN NaN NaN
68 1 0 3 ... 85.4 83.14 NaN
69 1 0 3 ... NaN NaN NaN
70 1 1 3 ... NaN NaN NaN
tool tool_input log \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
.. ... ... ...
66 NaN NaN NaN
67 NaN NaN NaN
68 NaN NaN NaN
69 NaN NaN I now know the final answer.\nFinal Answer: B...
70 NaN NaN NaN
input_str description output \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
.. ... ... ...
66 NaN NaN Bryan Adams has never married. In the 1990s, h...
67 NaN NaN NaN
68 NaN NaN NaN
69 NaN NaN Bryan Adams has never been married.
70 NaN NaN NaN
outputs
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
.. ...
66 NaN
67 NaN
68 NaN
69 NaN
70 Bryan Adams has never been married.
[71 rows x 47 columns], 'session_analysis': prompt_step prompts name \
0 2 Answer the following questions as best you can... OpenAI
1 7 Answer the following questions as best you can... OpenAI
2 12 Answer the following questions as best you can... OpenAI
output_step output \
0 3 I need to find out who sang summer of 69 and ...
1 8 I need to find out who Bryan Adams is married...
2 13 I now know the final answer.\nFinal Answer: B...
token_usage_total_tokens token_usage_prompt_tokens \
0 223 189
1 270 242
2 332 314
token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \
0 34 91.61 3.8
1 28 94.66 2.7
2 18 81.29 3.7
... difficult_words linsear_write_formula gunning_fog \
0 ... 2 5.75 5.4
1 ... 2 4.25 4.2
2 ... 1 2.50 2.8
text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \
0 3rd and 4th grade 121.07 119.50 54.91
1 4th and 5th grade 124.13 119.20 52.26
2 3rd and 4th grade 115.70 110.84 49.79
crawford gulpease_index osman
0 0.9 72.7 92.16
1 0.7 74.7 84.20
2 0.7 85.4 83.14
[3 rows x 24 columns]}
Copy
Could not update last created model in Task 988bd727b0e94a29a3ac0ee526813545, Task status 'completed' cannot be updated
팁 및 다음 단계
-
clearml_callback.flush_tracker함수에 항상 고유한name인자를 사용해야 합니다. 그렇지 않으면 실행에 사용된 모델 파라미터가 이전 실행을 덮어쓰게 됩니다! -
clearml_callback.flush_tracker(..., finish=True)를 사용하여 ClearML Callback을 닫으면 Callback을 더 이상 사용할 수 없습니다. 로깅을 계속하려면 새로운 Callback을 만드세요. - 오픈소스 ClearML 생태계의 나머지 부분을 확인해보세요. 데이터 버전 관리자, 원격 실행 agent, 자동화된 파이프라인 등이 있습니다!
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.