Copy
---
title: TensorFlow Hub
---
>[TensorFlow Hub](https://www.tensorflow.org/hub)는 미세 조정이 가능하고 어디서나 배포할 수 있는 학습된 머신러닝 모델의 저장소입니다. `BERT`와 `Faster R-CNN`과 같은 학습된 모델을 단 몇 줄의 코드로 재사용할 수 있습니다.
TensorflowHub Embedding class를 로드해 보겠습니다.
```python
from langchain_community.embeddings import TensorflowHubEmbeddings
Copy
embeddings = TensorflowHubEmbeddings()
Copy
2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Copy
text = "This is a test document."
Copy
query_result = embeddings.embed_query(text)
Copy
doc_results = embeddings.embed_documents(["foo"])
Copy
doc_results
Copy
---
<Callout icon="pen-to-square" iconType="regular">
[Edit the source of this page on GitHub.](https://github.com/langchain-ai/docs/edit/main/src/oss/python/integrations/text_embedding/tensorflowhub.mdx)
</Callout>
<Tip icon="terminal" iconType="regular">
[Connect these docs programmatically](/use-these-docs) to Claude, VSCode, and more via MCP for real-time answers.
</Tip>