---
title: Clova Embeddings
---

[Clova](https://api.ncloud-docs.com/docs/ai-naver-clovastudio-summary)는 embeddings 서비스를 제공합니다

이 예제는 LangChain을 사용하여 텍스트 embedding을 위한 Clova inference와 상호작용하는 방법을 다룹니다.

```python
import os

os.environ["CLOVA_EMB_API_KEY"] = ""
os.environ["CLOVA_EMB_APIGW_API_KEY"] = ""
os.environ["CLOVA_EMB_APP_ID"] = ""
from langchain_community.embeddings import ClovaEmbeddings
embeddings = ClovaEmbeddings()
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = ["This is a test doc1.", "This is a test doc2."]
document_result = embeddings.embed_documents(document_text)

---

<Callout icon="pen-to-square" iconType="regular">
    [Edit the source of this page on GitHub.](https://github.com/langchain-ai/docs/edit/main/src/oss/python/integrations/text_embedding/clova.mdx)
</Callout>
<Tip icon="terminal" iconType="regular">
    [Connect these docs programmatically](/use-these-docs) to Claude, VSCode, and more via MCP for    real-time answers.
</Tip>
I